jueves, 11 de agosto de 2011

VGA

El término Video Graphics Adapter (VGA) se utiliza tanto para denominar al sistema gráfico de pantallas para PC (conector VGA de 15 clavijas D subminiatura que se comercializó por primera vez en 1988 por IBM); como a la resolución 640 × 480. Si bien esta resolución ha sido reemplazada en el mercado de las computadoras, se está convirtiendo otra vez popular por los dispositivos móviles. VGA fue el último estándar de gráficos introducido por IBM al que la mayoría de los fabricantes de clones de PC se ajustaba, haciéndolo hoy (a partir de 2007) el mínimo que todo el hardware gráfico soporta antes de cargar un dispositivo específico. Por ejemplo, la pantalla de Microsoft Windows aparece mientras la máquina sigue funcionando en modo VGA, razón por la que esta pantalla aparecerá siempre con reducción de la resolución y profundidad de color. VGA fue oficialmente reemplazado por XGA estándar de IBM pero en realidad ha sido reemplazada por numerosas extensiones clon ligeramente distintas a VGA realizados por los fabricantes que llegaron a ser conocidas en conjunto como "Super VGA".
Detalles técnicos

VGA que se denomina "matriz" (array) en lugar de "adaptador" (adapter), ya que se puso en práctica desde el inicio como un solo chip, en sustitución de los Motorola 6845 y docenas de chips de lógica discreta que cubren una longitud total de una tarjeta ISA que MDA, CGA y EGA utilizaban. Esto también permite que se coloquen directamente sobre la placa base del PC con un mínimo de dificultad (sólo requiere memoria de vídeo y un RAMDAC externo). Los primeros modelos IBM PS / 2 estaban equipados con VGA en la placa madre. Las especificaciones VGA son las siguientes:
  • 256 KiB de memoria gráfica
  • Modos: 16 y 256-colores
  • 262144 valores de la paleta de colores (6 bits para rojo, verde y azul)
  • Reloj maestro seleccionable de 25,2 MHz o 28,3
  • Máximo de 720 píxeles horizontales
  • Máximo de 480 líneas
  • Tasa de refresco de hasta 70 Hz
  • Interrupción vertical vacía (No todas las tarjetas lo soportan)
  • Modo plano: máximo de 16 colores
  • Modo píxel empaquetado: en modo 256 colores (Modo 13h)
  • Soporte para hacer scroll.
  • Algunas operaciones para mapas de bits
  • Barrel shifter
  • Soporte para partir la pantalla
  • 0,7 V pico a pico
  • 75 ohmios de impedancia (9,3 mA - 6,5 mW)
VGA soporta tanto los modos de todos los puntos direccionables como modos de texto alfanuméricos. Los modos estándar de gráficos son:
  • 640×480 en 16 colores
  • 640×350 en 16 colores
  • 320×200 en 16 colores
  • 320×200 en 256 colores (Modo 13h)
Tanto como los modos estándar, VGA puede ser configurado para emular a cualquiera de sus modos predecesores (EGA, CGA, and MDA).
Conector VGA
Un conector VGA como se le conoce comúnmente (otros nombres incluyen conector RGBHV, D-sub 15, sub mini mini D15 y D15), de tres hileras de 15 pines DE-15. Hay cuatro versiones: original, DDC2, el más antiguo y menos flexible DE-9, y un Mini-VGA utilizados para computadoras portátiles. El conector común de 15 pines se encuentra en la mayoría de las tarjetas gráficas, monitores de computadoras, y otros dispositivos, es casi universalmente llamado "HD-15". HD es de "alta densidad", que la distingue de los conectores que tienen el mismo factor de forma, pero sólo en 2 filas de pines. Sin embargo, este conector es a menudo erróneamente denominado DB-15 o HDB-15. Los conectores VGA y su correspondiente cableado casi siempre son utilizados exclusivamente para transportar componentes analógicos RGBHV (rojo - verde - azul - sincronización horizontal - sincronización vertical), junto con señales de vídeo DDC2 reloj digital y datos. En caso de que el tamaño sea una limitación (como portátiles) un puerto mini-VGA puede figurar en ocasiones en lugar de las de tamaño completo conector VGA.

Conector VGA (DE-15/HD-15)
SVGA port.jpg
Un conector VGA
TipoConector analógico de video en alta definición
Historia de producción
DiseñadorIBM basado en D-subminiature
Diseñado en1987
Producido1987 - Presente
Especificaciones
Señal de VideoRGB más sincronismo H y V
Señal de DatosI²C canal de datos para informaciónDDC
Pines15
ConectorDE-15
Patillaje
DE15 Connector Pinout.svg
Un conector DE15 hembra.
Pin 1REDCanal Rojo
Pin 2GREENCanal Verde
Pin 3BLUECanal Azul
Pin 4N/CSin contacto
Pin 5GNDTierra (HSync)
Pin 6RED_RTNVuelta Rojo
Pin 7GREEN_RTNVuelta Verde
Pin 8BLUE_RTNVuelta Azul
Pin 9+5 V+5 V (Corriente contínua)
Pin 10GNDtierra (Sincr. Vert, Corriente Continua)
Pin 11N/CSin contacto
Pin 12SDAI²C datos
Pin 13HSyncSincronización Horizontal
Pin 14VSyncSincronización vertical
Pin 15SCLI2Velocidad Reloj

PUERTO PARALELO


Un puerto paralelo es una interfaz entre una computadora y un periférico, cuya principal característica es que los bits de datos viajan juntos, enviando un paquete de byte a la vez. Es decir, se implementa un cable o una vía física para cada bit de datos formando un bus. Mediante el puerto paralelo podemos controlar también periféricos como focos, motores entre otros dispositivos, adecuados para automatización.
El cable paralelo es el conector físico entre el puerto paralelo y el dispositivo periférico. En un puerto paralelo habrá una serie de bits de control en vías aparte que irán en ambos sentidos por caminos distintos.
En contraposición al puerto paralelo está el puerto serie, que envía los datos bit a bit por el mismo hilo.
Puerto paralelo Centronics
El puerto paralelo más conocido es el puerto de impresora (que cumplen más o menos la norma IEEE 1284, también denominados tipo Centronics) que destaca por su sencillez y que transmite 98 bits. Se ha utilizado principalmente para conectar impresoras, pero también ha sido usado para programadores EPROM, escáners, interfaces de red Ethernet a 10 Mb, unidades ZIP, SuperDisk y para comunicación entre dos PC (MS-DOS trajo en las versiones 5.0 ROM a 6.22 un programa para soportar esas transferencias).
El puerto paralelo de las computadoras, de acuerdo a la norma Centronics, está compuesto por un bus de comunicación bidireccional de 8 bits de datos, además de un conjunto de líneas de protocolo. Las líneas de comunicación cuentan con un retenedor que mantiene el último valor que les fue escrito hasta que se escribe un nuevo dato, las características eléctricas son:
  • Tensión de nivel alto: 3,3 o 5 V.
  • Tensión de nivel bajo: 0 V.
  • Intensidad de salida máxima: 2,6 mA.
  • Intensidad de entrada máxima: 24 mA.
Los sistemas operativos basados en DOS y compatibles gestionan las interfaces de puerto paralelo con los nombres LPT1, LPT2 y así sucesivamente, Unix en cambio los nombra como /dev/lp0, /dev/lp1, y demás. Las direcciones base de los dos primeros puertos son:
  • LPT1 = 0x378.
  • LPT2 = 0x278
Nome della portaInterrupt #Iniziale I/OFinale I/O
LPT1IRQ 70x3780x37f
LPT2IRQ 50x2780x27f
LPT3IRQ 70x3bc0x3bf
Per le porte eccedenti sono consigliati li indirizzi:
Nome della portaInterrupt #Iniziale I/OFinale I/O
LPT4IRQ ?0x27C0x27F
LPT5IRQ ?0x26C0x26F
LPT6IRQ ?0x2680x26B
La estructura consta de tres registros: de control, de estado y de datos.
  • El registro de control es un bidireccional de 4 bits, con un bit de configuración que no tiene conexión al exterior, su dirección en el LPT1 es 0x37A.
  • El registro de estado, se trata de un registro de entrada de información de 5 bits, su dirección en el LPT1 es 0x379.
  • El registro de datos, se compone de 8 bits, es bidireccional. Su dirección en el LPT1 es 0x378.
Puerto paralelo IDE
No obstante existe otro puerto paralelo usado masivamente en los ordenadores: el puerto paralelo IDE, también llamado PATA (Paralell ATA), usado para la conexión de discos duros, unidades lectoras/grabadoras (CD-ROM, DVD), unidades magneto-ópticas, unidades ZIP y SuperDisk, entre la placa base del ordenador y el dispositivo.
Puerto paralelo SCSI
Un tercer puerto paralelo, muy usado en los ordenadores Apple referencia para el uso en el computador y sirve como un puerto serial el hardware 1.5 para PC/Commodore Amiga.


Un puerto paralelo de impresora en la parte trasera de un portátil Compaq N150

PUERTO IEEE 1394 Ó FIREWIRE

El IEEE 1394 (conocido como FireWire por Apple Inc. y como i.Link por Sony) es un estándar multiplataforma para la entrada y salida de datos en serie a gran velocidad. Suele utilizarse para la interconexión de dispositivos digitales como cámaras digitales y videocámaras a computadoras.
Versiones

Su velocidad hace que sea la interfaz más utilizada para audio y vídeo digital. Así, se usa mucho en cámaras de vídeo, discos duros, impresoras, reproductores de vídeo digital, sistemas domésticos para el ocio, sintetizadores de música y escáneres.
Existen cuatro versiones:

FireWire 400 (IEEE 1394-1995)

Lanzado en 1995. Tiene un ancho de banda de 400 Mbit/s, 30 veces mayor que el USB 1.1 (12 Mbit/s) y similar a la del USB 2.0 (480 Mbit/s), aunque en pruebas realizadas, en transferencias de lectura de 5000 ficheros con un total de 300 Mb, FireWire completó el proceso con un 33% más de velocidad que USB 2.0, debido a su arquitectura peer-to-peer mientras USB utiliza arquitectura slave-master. La longitud máxima permitida con un único cable es de 4,5 metros, pudiendo utilizarse hasta 16 repetidores para prolongar la longitud (no pudiendo sobrepasar nunca la distancia de 72 metros). Su conector está dotado de 6 pines, dos de ellos destinados a la alimentación del dispositivo (excepto en la versión distribuida por sony, iLink, que carece de estos dos pines de alimentación) ofreciendo un consumo de unos 7 u 8 W por puerto a 25 V (nominalmente).

Revisión IEEE 1394a-1995

En 2000 se implementó una revisión de IEEE 1394-1995, añadiéndole características como difusión asíncrona, una reconfiguración de bus más rápida, concatenación de paquetes, y ahorro de energía en modo suspensión

FireWire 800 (IEEE 1394b-2000)

Publicado en 2000. Duplica aproximadamente la velocidad del FireWire 400, hasta 786.5 Mbps con tecnología full-duplex, cubriendo distancias de hasta 100 metros por cable. Firewire 800 reduce los retrasos en la negociación, utilizando para ello 8b10b (código que codifica 8 bits en 10 bits, que fue desarrollado por IBM y permite suficientes transiciones de reloj, la codificación de señales de control y detección de errores. El código 8b10b es similar a 4B/5B de FDDI (que no fue adoptado debido al pobre equilibrio de corriente continua), que reduce la distorsión de señal y aumenta la velocidad de transferencia. Así, para usos que requieran la transferencia de grandes volúmenes de información, resulta muy superior al USB 2.0. Posee compatibilidad retroactiva con Firewire 400 utilizando cables híbridos que permiten la conexión en los conectores de Firewire400 de 6 pines y los conectores de Firewire 800, dotados de 9 pines. No fue hasta 2003 cuando Apple lanzó el primer uso comercial de Firewire 800.

FireWire s1600 y s3200 (IEEE 1394-2008)

Anunciados en diciembre de 2007, permiten un ancho de banda de 1'6 y 3'2 Gbit/s, cuadruplicando la velocidad del Firewire 800, a la vez que utilizan el mismo conector de 9 pines.

FireWire s800T (IEEE 1394c-2006)

Anunciado en junio de 2007. Aporta mejoras técnicas que permite el uso de FireWire con puertos RJ45 sobre cable CAT 5, combinando así las ventajas de Ethernet con Firewire 800.
Caracteristicas generales
  • Soporta la conexión de hasta 63 dispositivos con cables de una longitud máxima de 425 cm con topología en árbol.
  • Compatible con plug-and-play.
  • Compatible con comunicación peer-to-peer que permite el enlace entre dispositivos sin necesidad de usar la memoria del sistema o el microprocesador.
  • Compatible con conexión en caliente.
  • Todos los dispositivos IEEE 1394 son identificados por un identificador IEEE EUI-64 exclusivo (una extensión de las direcciones MAC Ethernet).
Comparativa de velocidades

Conexiones de dispositivos externos
  • Firewire 800: 100 MB/s
  • Firewire s1600: 200 MB/s
  • Firewire s3200: 400 MB/s
  • USB 1.0: 0,19 MB/s
  • USB 1.1: 1,5 MB/s
  • USB 2.0: 60 MB/s
Conexiones de dispositivos externos de Alta Velocidad
  • USB 3.0: 600 MB/s
  • Thunderbolt: 1200 MB/s
Conexiones para tarjetas de expansión
  • PCI Express 1.x (x1): 250 MB/s
  • PCI Express 2.0 (x1): 500 MB/s
  • PCI Express 3.0 (x1): 1000 MB/s
  • PCI Express 1.x (x8): 2000 MB/s
  • PCI Express 2 (x8): 4000 MB/s
  • PCI Express 3 (x8): 8000 MB/s
  • PCI Express 1.x (x16): 4000 MB/s
  • PCI Express 2 (x16): 8000 MB/s
  • PCI Express 3 (x16): 16000 MB/s
Conexiones de almacenamiento interno
  • ATA: 100 MB/s (UltraDMA 5)
  • PATA: 133 MB/s (UltraDMA 6)
  • SATA I: 150 MB/s
  • SATA II: 300 MB/s
  • SATA III: 600 MB/s
Aplicaciones

Edición de vídeo digital

La edición de vídeo digital con IEEE 1394 ha permitido que tuviera lugar una revolución en la producción del vídeo con sistemas de escritorio. La incorporación de FireWire en cámaras de vídeo de bajo costo y elevada calidad permite la creación de vídeo profesional en Macintosh o PC. Atrás quedan las carísimas tarjetas de captura de vídeo y las estaciones de trabajo con dispositivos SCSI de alto rendimiento. IEEE 1394 permite la captura de vídeo directamente de las nuevas cámaras de vídeo digital con puertos FireWire incorporados y de sistemas analógicos mediante conversores de audio y vídeo a IEEE 1394.


PCI


Un Peripheral Component Interconnect (PCI, "Interconexión de Componentes Periféricos") consiste en un bus de ordenador estándar para conectar dispositivos periféricos directamente a su placa base. Estos dispositivos pueden ser circuitos integrados ajustados en ésta (los llamados "dispositivos planares" en la especificación PCI) o tarjetas de expansión que se ajustan en conectores. Es común en PC, donde ha desplazado al ISA como bus estándar, pero también se emplea en otro tipo de ordenadores.
A diferencia de los buses ISA, el bus PCI permite configuración dinámica de un dispositivo periférico. En el tiempo de arranque del sistema, las tarjetas PCI y el BIOS interactúan y negocian los recursos solicitados por la tarjeta PCI. Esto permite asignación de IRQs y direcciones del puerto por medio de un proceso dinámico diferente del bus ISA, donde las IRQs tienen que ser configuradas manualmente usando jumpers externos. Las últimas revisiones de ISA y el bus MCA de IBM ya incorporaron tecnologías que automatizaban todo el proceso de configuración de las tarjetas, pero el bus PCI demostró una mayor eficacia en tecnología "plug and play". Aparte de esto, el bus PCI proporciona una descripción detallada de todos los dispositivos PCI conectados a través del espacio de configuración PCI.
La especificación PCI cubre el tamaño físico del bus, características eléctricas, cronómetro del bus y sus protocolos. El grupo de interés especial de PCI (PCI Special Interest Group) comercializa copias de la especificación en http://www.pcisig.com
Historia
El trabajo sobre los PCI empezó en el laboratorio Intel en 1990 situado en Berkeley California. El PCI 1.0 el cual fue solamente una especificación a nivel de componentes fue lanzado el 22 de junio de 1992.El PCI 2.0 fue el primero en establecer el estándar para el conector y el slot de la placa base, fue lanzado en 1993. El PCI 2.1 se lanzo al mercado el 1 de junio de 1995.
PCI fue inmediatamente puesto al uso de los servidores reemplazando MCA y EISA como opción al bus de expansión. En PC fue más lento en reemplazar al VESA Local Bus y no ganó la suficiente penetración en el mercado hasta después del 1994 con la segunda generación de los Pentium. Para 1996 el VESA se extinguió y las compañías reemplazaron hasta en los computadores 80486. Apple adoptó el PCI para el Power Macintosh (reemplazando al NuBus) a mediados de 1995 y el Performa (reemplazando a LC PDS) a mediados de 1996.
Nuevas versiones PCI añadieron características y mejoras en el rendimiento incluyendo un estándar a 66MHz 3.3V y otro de 133MHz llamados PCI-X. Ambos PCI-X 1.0b y PCI-X 2.0 son compatibles con sus predecesores. Con la introducción de la versión serial PCI Express en el 2004, los fabricantes de placas base van incluyendo cada vez menos ranuras PCI a favor del nuevo estándar, aunque todavía es común ver ambas interfaces implementadas. Henry creo los puertos con sus respectivos periféricos.
Especificaciones hardware
Estas especificaciones representan a la versión de PCI más comúnmente usada en los PC
  • Reloj de 33,33 MHz con transferencias síncronas
  • Ancho de bus de 32 bits o 64 bits
  • Tasa de transferencia máxima de 133 MB por segundo en el bus de 32 bits (33,33 MHz × 32 bits ÷ 8 bits/byte = 133 MB/s)
  • Tasa de transferencia máxima de 266 MB/s en el bus de 64 bits.
  • Espacio de dirección de 32 bits (4 GB)
  • Espacio de puertos I/O de 32 bits (actualmente depreciado)
  • 256 bytes de espacio de configuración.
  • 3,3 V o 5 V, dependiendo del dispositivo
  • reflected-wave switching
  • Es la mas utilizable
Variantes convencionales de PCI
  • Cardbus es un formato PCMCIA de 32 bits, 33 MHz PCI
  • Compact PCI, utiliza módulos de tamaño Eurocard conectado en una placa hija PCI.
  • PCI 2.2 funciona a 66 MHz (requiere 3,3 voltios en las señales) (índice de transferencia máximo de 503 MiB/s (533MB/s).
  • PCI 2.3 permite el uso de 3,3 voltios y señalizador universal, pero no soporta los 5 voltios en las tarjetas.
  • PCI 3.0 es el estándar final oficial del bus, con el soporte de 5 voltios completamente quitado.
  • PCI-X cambia el protocolo levemente y aumenta la transferencia de datos a 133 MHz (índice de transferencia máximo de 1014 MiB/s).
  • PCI-X 2.0 especifica un ratio de 266 MHz (índice de transferencia máximo de 2035 MiB/s) y también de 533 MHz, expande el espacio de configuración a 4096 bytes, añade una variante de bus de 16 bits y utiliza señales de 1,5 voltios.
  • Mini PCI es un nuevo formato de PCI 2.2 para utilizarlo internamente en los portátiles.
  • PC/104-Plus es un bus industrial que utiliza las señales PCI con diferentes conectores.
  • Advanced Telecommunications Computing Architecture (ATCA o AdvancedTCA) es la siguiente generación de buses para la industria de las telecomunicaciones.
  • PXI es la extensión del bus PCI para instrumentación y control.
Dimensiones de las tarjetas

Tarjeta de tamaño completo

La tarjeta original PCI de “tamaño completo” tiene un grosor de unos 107 mm (4.2 pulgadas) y una largo de 312 mm (12.283 pulgadas). La altura incluye el conector de borde de tarjeta. Sin embargo, las tarjetas PCI más modernas son de medio cuerpo o más pequeñas (mirar debajo) y a muchos ordenadores personales no se les pueden encajar una tarjeta de tamaño lleno.

La Tarjeta backplate

Además de estas dimensiones el tamaño del backplate está también estandarizado. El backplate es la pieza de metal situada en el borde que se utiliza para fijarla al chasis y contiene los conectores externos. La tarjeta puede ser de un tamaño menor, pero el backplate debe ser de tamaño completo y localizado propiamente. Respecto del anterior bus ISA, está situado en el lado opuesto de la placa para evitar errores.

La tarjeta de extensión “de medio cuerpo” (de facto estándar)

Esto es de hecho el estándar práctico en la actualidad - la mayoría de las tarjetas modernas PCI son aptas dentro de estas dimensiones.
• Anchura: 0.6 pulgadas (15.24 mm) • Profundidad: 6.9 pulgadas (175.26 mm) • Altura: 4.2 pulgadas (106.68 mm)

La tarjeta de perfil bajo (altura media)

La organización PCI ha definido un estándar para tarjetas "de perfil bajo" que es básicamente apto en las gamas siguientes:
• Altura: 1.42 pulgadas (36.07 mm) a 2.536 pulgadas (64.41 mm) • • Profundidad: 4.721 pulgadas (119.91 mm) a 6.6 pulgadas (167.64 mm)
El anaquel también es reducido en altura a un estándar de 3.118 pulgadas (79.2 mm). El anaquel más pequeño no encaja en un ordenador personal estándar. Muchos fabricantes solucionan esto suministrando ambos tipos de anaquel (los anaqueles típicamente son atornillados a la tarjeta entonces el cambio de ellos no es difícil).
Éstas tarjetas pueden ser conocidas por otros nombres como "delgado". • perfil bajo PCI FAQ • perfil bajo PCI Especificación

Mini PCI

Mini PCI fue añadida a la versión 2.2 PCI para el empleo en ordenadores portátiles y usa un bus de 32 bits, de 33 MHz con conexiones impulsadas (3.3 V sólo) y el apoyo al bus que domina y DMA. El tamaño estándar para tarjetas Mini PCI es aproximadamente 1/4 de sus similares de tamaño natural. Como no hay ningún acceso externo a la tarjeta de la misma manera que hay para el escritorio de las tarjetas PCI, las Mini PCI generalmente son limitadas en las funciones que ellos pueden realizar.
Muchos dispositivos Mini PCI fueron desarrollados como Wi-Fi, Ethernet Rápida, Bluetooth, módems (a menudo Winmodems), tarjetas de sonido, aceleradores criptográficos, SCSI, IDE/ATA, SATA tarjetas de combinación y reguladores. Las tarjetas regulares PCI pueden ser usadas con el hardware Mini PCI-equipado y viceversa, usando de-Mini PCI a PCI y de PCI-a los-Mini PCI convertidores .Mini PCI ha sido reemplazado por PCI Express Tarjeta Mini.

Los detalles técnicos de tarjetas Mini PCI

Las tarjetas Mini PCI tienen un consumo máximo de 2W, que también limita la funcionalidad que puede ser puesta en práctica en este factor de forma. Requieren que ellos también soporten la señal PCI CLKRUN#, empleada para arrancar y detener el reloj PCI por motivos de control de energía.
Hay tres factores de forma de tarjeta: Tipo I, Tipo II, y Tipo III. El conector de tarjeta usado para cada tipo incluye: El tipo I y II usan un conector de colocación de 100 pines, mientras el Tipo III emplea un conector de borde de 124 pines, p. ej: el conector para Tipo I y II se diferencian por esto del Tipo III, donde el conector está sobre el borde de una tarjeta, como con un SO-DIMM. Los 24 pines adicionales proporcionan las señales suplementarias requeridas a la ruta de entada salida por atrás del sistema conector (audio, el eslabón de corriente alterna, el LAN, la interfaz de línea telefónica). El tipo II de tarjetas tienen montados los conectores RJ11 Y RJ45. Estas tarjetas deben ser localizadas en el borde del ordenador o la estación que se atraca de modo que el RJ11 y puertos RJ45 puedan ser montados para el acceso externo.

Otras variaciones físicas

Los típicos sistemas de consumidores especifica "ranuras N x PCI " sin especificar las dimensiones reales del espacio disponible. En algunos pequeños sistemas de factor de forma, esto no es suficiente aún para que las tarjetas PCI "de medio cuerpo" entren en dicha ranura. A pesar de esta limitación, estos sistemas son todavía útiles porque muchas tarjetas PCI modernas son bastante más pequeñas que las de medio cuerpo.

Tarjeta de pulsación

Las típicas tarjetas PCI presentan una o dos muescas claves, según su voltaje señalado. Las tarjetas que requieren 3.3 voltios tienen una muesca de 56.21mm al frente de la tarjeta (donde están los conectores externos), mientras aquellos requieren 5 voltios tienen una de muesca 104.47mm del frente de la tarjeta. Las llamadas " tarjetas Universales " tienen ambas muescas claves y pueden aceptar los dos tipos de señales.
                                               Típica tarjeta PCI de 32 bits. En este caso, una controladora SCSI de Adaptec
                                                                 Buses PCI de una placa base para Pentium I


AGP


Accelerated Graphics Port o AGP (en español "puerto de gráficos acelerado) es un puerto (puesto que sólo se puede conectar un dispositivo, mientras que en el bus se pueden conectar varios) desarrollado por Intel en 1996 como solución a los cuellos de botella que se producían en las tarjetas gráficas que usaban el bus PCI. El diseño parte de las especificaciones del PCI 2.1.
El puerto AGP es de 32 bits como PCI pero cuenta con notables diferencias como 8 canales más adicionales para acceso a la memoria de acceso aleatorio (RAM). Además puede acceder directamente a esta a través del puente norte pudiendo emular así memoria de vídeo en la RAM. La velocidad del bus es de 66 MHz.
El bus AGP cuenta con diferentes modos de funcionamiento.
  • AGP 1X: velocidad 66 MHz con una tasa de transferencia de 266 MB/s y funcionando a un voltaje de 3,3V.
  • AGP 2X: velocidad 133 MHz con una tasa de transferencia de 532 MB/s y funcionando a un voltaje de 3,3V.
  • AGP 4X: velocidad 266 MHz con una tasa de transferencia de 1 GB/s y funcionando a un voltaje de 3,3 o 1,5V para adaptarse a los diseños de las tarjetas gráficas.
  • AGP 8X: velocidad 533 MHz con una tasa de transferencia de 2 GB/s y funcionando a un voltaje de 0,7V o 1,5V.
Estas tasas de transferencias se consiguen aprovechando los ciclos de reloj del bus mediante un multiplicador pero sin modificarlos físicamente..
El puerto AGP se utiliza exclusivamente para conectar tarjetas gráficas, y debido a su arquitectura sólo puede haber una ranura. Dicha ranura mide unos 8 cm y se encuentra a un lado de las ranuras PCI.
A partir de 2006, el uso del puerto AGP ha ido disminuyendo con la aparición de una nueva evolución conocida como PCI-Express, que proporciona mayores prestaciones en cuanto a frecuencia y ancho de banda. Así, los principales fabricantes de tarjetas gráficas, como ATI y nVIDIA, han ido presentando cada vez menos productos para este puerto.



USB


El Universal Serial Bus (bus universal en serie) o mejor conocido como Conductor Universal en Serie (CUS), abreviado comúnmente USB, es un puerto que sirve para conectar periféricos a un ordenador. Fue creado en 1996 por siete empresas (que actualmente forman el consejo directivo): IBM, Intel, Northern Telecom, Compaq, Microsoft, Digital Equipment Corporation y NEC.
El diseño del USB tenía en mente eliminar la necesidad de adquirir tarjetas separadas para poner en los puertos bus ISA o PCI, y mejorar las capacidades plug-and-play permitiendo a esos dispositivos ser conectados o desconectados al sistema sin necesidad de reiniciar. Sin embargo, en aplicaciones donde se necesita ancho de banda para grandes transferencias de datos, o si se necesita una latencia baja, los buses PCI o PCIe salen ganando. Igualmente sucede si la aplicación requiere de robustez industrial. A favor del bus USB, cabe decir que cuando se conecta un nuevo dispositivo, el servidor lo enumera y agrega el software necesario para que pueda funcionar (esto dependerá ciertamente del sistema operativo que se esté usando).
El USB puede conectar varios tipos de dispositivos como pueden ser: mouse, teclados, escáneres, cámaras digitales, teléfonos móviles, reproductores multimedia, impresoras, discos duros externos entre otros ejemplos, tarjetas de sonido, sistemas de adquisición de datos y componentes de red. Para dispositivos multimedia como escáneres y cámaras digitales, el USB se ha convertido en el método estándar de conexión. Para impresoras, el USB ha crecido tanto en popularidad que ha desplazado a un segundo plano a los puertos paralelos porque el USB hace mucho más sencillo el poder agregar más de una impresora.
Algunos dispositivos requieren una potencia mínima, así que se pueden conectar varios sin necesitar fuentes de alimentación extra. La gran mayoría de los concentradores incluyen fuentes de alimentación que brindan energía a los dispositivos conectados a ellos, pero algunos dispositivos consumen tanta energía que necesitan su propia fuente de alimentación. Los concentradores con fuente de alimentación pueden proporcionarle corriente eléctrica a otros dispositivos sin quitarle corriente al resto de la conexión (dentro de ciertos límites).
En el caso de los discos duros, es poco probable que el USB reemplace completamente a los buses (el ATA (IDE) y el SCSI), pues el USB tiene un rendimiento más lento que esos otros estándares. Sin embargo, el USB tiene una importante ventaja en su habilidad de poder instalar y desinstalar dispositivos sin tener que abrir el sistema, lo cual es útil para dispositivos de almacenamiento externo. Hoy en día, una gran parte de los fabricantes ofrece dispositivos USB portátiles que ofrecen un rendimiento casi indistinguible en comparación con los ATA (IDE). Por el contrario, el nuevo estándar Serial ATA permite tasas de transferencia de hasta aproximadamente 150/300 MB por segundo, y existe también la posibilidad de extracción en caliente e incluso una especificación para discos externos llamada eSATA.
El USB casi ha reemplazado completamente a los teclados y mouses (ratones) PS/2, hasta el punto que un amplio número de placas base modernas carecen de dicho puerto o solamente cuentan con uno válido para los dos periféricos.

PinNombreColor del cableDescripción
1VCCRojo+5v
2D−BlancoData −
3D+VerdeData +
4GNDNegroMasa
Velocidades de transmisión

Los dispositivos USB se clasifican en cuatro tipos según su velocidad de transferencia de datos:
  • Baja velocidad (1.0): Tasa de transferencia de hasta 1,5 Mbps (192 KB/s). Utilizado en su mayor parte por dispositivos de interfaz humana (Human interface device, en inglés) como los teclados, los ratones (mouse), las cámaras web, etc.
  • Velocidad completa (1.1): Tasa de transferencia de hasta 12 Mbps (1,5 MB/s) según este estándar, pero se dice en fuentes independientes que habría que realizar nuevamente las mediciones. Ésta fue la más rápida antes de la especificación USB 2.0, y muchos dispositivos fabricados en la actualidad trabajan a esta velocidad. Estos dispositivos dividen el ancho de banda de la conexión USB entre ellos, basados en un algoritmo de impedancias LIFO.
  • Alta velocidad (2.0): Tasa de transferencia de hasta 480 Mbps (60 MB/s) pero por lo general de hasta 125Mbps (16MB/s). Está presente casi en el 99% de los PC actuales. El cable USB 2.0 dispone de cuatro líneas, un par para datos, una de corriente y un cuarto que es el negativo o retorno.
  • Super alta velocidad (3.0): Tiene una tasa de transferencia de hasta 4.8 Gbps (600 MB/s). La velocidad del bus es diez veces más rápida que la del USB 2.0, debido a que han incluido 5 conectores extra, desechando el conector de fibra óptica propuesto inicialmente, y será compatible con los estándares anteriores. usa un cable de 9 hilos. En Octubre de 2009 la compañía taiwanesa ASUS lanzó la primera placa base que incluía puertos USB3, tras ella muchas otras le han seguido y se espera que en 2012 ya sea el estándar de facto.
Las señales del USB se transmiten en un cable de par trenzado con impedancia característica de 90 Ω ± 15%, cuyos hilos se denominan D+ y D-. Estos, colectivamente, utilizan señalización diferencial en half dúplex excepto el USB 3.0 que utiliza un segundo par de hilos para realizar una comunicación en full dúplex. La razón por la cual se realiza la comunicación en modo diferencial es simple, reduce el efecto del ruido electromagnético en enlaces largos. D+ y D- suelen operar en conjunto y no son conexiones simples. Los niveles de transmisión de la señal varían de 0 a 0'3 V para bajos (ceros) y de 2'8 a 3'6 V para altos (unos) en las versiones 1.0 y 1.1, y en ±400 mV en alta velocidad (2.0). En las primeras versiones, los alambres de los cables no están conectados a masa, pero en el modo de alta velocidad se tiene una terminación de 45 Ω a masa o un diferencial de 90 Ω para acoplar la impedancia del cable. Este puerto sólo admite la conexión de dispositivos de bajo consumo, es decir, que tengan un consumo máximo de 100 mA por cada puerto; sin embargo, en caso de que estuviese conectado un dispositivo que permite 4 puertos por cada salida USB (extensiones de máximo 4 puertos), entonces la energía del USB se asignará en unidades de 100 mA hasta un máximo de 500 mA por puerto.

Miniplug/Microplug
PinNombreColorDescripción
1VCCRojo+5 V
2D-BlancoData -
3D+VerdeData +
4IDNingunoPermite la distinción de
Micro-A y Micro-B
Tipo A: conectado a masa
Tipo B: no conectado
5GNDNegroMasa y retorno o negativo
Compatibilidad y conectores 

El estándar USB especifica tolerancias mecánicas relativamente amplias para sus conectores, intentando maximizar la compatibilidad entre los conectores fabricados por la compañía ―una meta a la que se ha logrado llegar. El estándar USB, a diferencia de otros estándares también define tamaños para el área alrededor del conector de un dispositivo, para evitar el bloqueo de un puerto adyacente por el dispositivo en cuestión.
Las especificaciones USB 1.0, 1.1 y 2.0 definen dos tipos de conectores para conectar dispositivos al servidor: A y B. Sin embargo, la capa mecánica ha cambiado en algunos conectores. Por ejemplo, el IBM UltraPort es un conector USB privado localizado en la parte superior del LCD de los computadoras portátiles de IBM. Utiliza un conector mecánico diferente mientras mantiene las señales y protocolos característicos del USB. Otros fabricantes de artículos pequeños han desarrollado también sus medios de conexión pequeños, y ha aparecido una gran variedad de ellos, algunos de baja calidad.
Una extensión del USB llamada "USB On The Go" (sobre la marcha) permite a un puerto actuar como servidor o como dispositivo - esto se determina por qué lado del cable está conectado al aparato. Incluso después de que el cable está conectado y las unidades se están comunicando, las 2 unidades pueden "cambiar de papel" bajo el control de un programa. Esta facilidad está específicamente diseñada para dispositivos como PDA, donde el enlace USB podría conectarse a un PC como un dispositivo, y conectarse como servidor a un teclado o ratón. El "USB-On-The-Go" también ha diseñado 2 conectores pequeños, el mini-A y el mini-B, así que esto debería detener la proliferación de conectores miniaturizados de entrada.
Almacenamiento masivo USB
USB implementa conexiones a dispositivos de almacenamiento usando un grupo de estándares llamado USB mass storage device class (abreviado en inglés "MSC" o "UMS"). Éste se diseñó inicialmente para memorias ópticas y magnéticas, pero ahora sirve también para soportar una amplia variedad de dispositivos, particularmente memorias USB.
Wireless USB
Wireless USB (normalmente abreviado W-USB o WUSB) es un protocolo de comunicación inalámbrica por radio con gran ancho de banda que combina la sencillez de uso de USB con la versatilidad de las redes inalámbricas. Utiliza como base de radio la plataforma Ultra-WideBand desarrollada por WiMedia Alliance, que puede lograr tasas de transmisión de hasta 480 Mbps (igual que USB 2.0) en rangos de tres metros y 110 en rangos de diez metros y opera en los rangos de frecuencia de 3,1 a 10,6 GHz. Actualmente se está en plena transición y aún no existen muchos dispositivos que incorporen este protocolo, tanto clientes como anfitriones. Mientras dure este proceso, mediante los adaptadores y/o cables adecuados se puede convertir un equipo WUSB en uno USB y viceversa.
USB 3.0

La principal característica es la multiplicación por 10 de la velocidad de transferencia, que pasa de los 480 Mbps a los 4,8 Gbps (600 MB/s).
Otra de las características de este puerto es su "regla de inteligencia": los dispositivos que se enchufan y después de un rato quedan en desuso, pasan inmediatamente a un estado de bajo consumo.
A la vez, la intensidad de la corriente se incrementa de los 500 a los 900 miliamperios, que sirve para abastecer a un teléfono móvil o un reproductor audiovisual portátil en menos tiempo.
Por otro lado, aumenta la velocidad en la transmisión de datos, ya que en lugar de funcionar con tres líneas, lo hace con cinco. De esta manera, dos líneas se utilizan para enviar, otras dos para recibir, y una quinta se encarga de suministrar la corriente. Así, el tráfico es bidireccional (Full dúplex).
A finales de 2009, fabricantes como Asus o Gigabyte presentaron placas base con esta nueva revisión del bus. La versión 3.0 de este conector universal es 10 veces más rápida que la anterior. Aquellos que tengan un teclado o un ratón de la versión anterior no tendrán problemas de compatibilidad, ya que el sistema lo va a reconocer al instante, aunque no podrán beneficiarse de los nuevos adelantos de este puerto usb serial bus.
En la feria Consumer Electronics Show (CES), que se desarrolló en Las Vegas, Estados Unidos, se presentaron varios aparatos que vienen con el nuevo conector. TantoWestern Digital como Seagate anunciaron discos externos equipados con el USB 3.0, mientras que Asus, Fujitsu y HP anunciaron que tendrán modelos portátiles con este puerto.
Según se comenta en algunos blogs especializados, desde que se anunció el USB 3.0 Intel estaría intentando retrasar su adopción como nuevo estándar para impulsar su propio conector alternativo, llamado Thuderbolt, aunque el USB ya cuenta con el aval de toda la industria mientras que Thunderbolt solo con el de la misma Intel y Apple esta ultima es conocida por tener una cuota de mercado alrededor al 5% en computadoras domesticas y portatiles.
Lista de periféricos que es posible conectar a un puerto USB

El puerto USB es un estándar que permite la transferencia de información desde o hacia otro periférico. Esta lista detalla los periféricos que es posible conectar a un puerto USB.
  • Adaptadores de memorias
  • Cámaras de fotos
  • Cámaras de video
  • Teléfonos móviles
  • Disqueteras externas
  • Discos duros externos
  • Grabadoras de DVD externas
  • Impresoras
  • Ratones USB
  • Multifunciones
  • Teclados USB
  • MP3
  • MP4
  • Pendrives
  • PDA
  • Pedales
  • Sintonizadoras de TV
  • Volantes
  • Joysticks
  • Webcams
  • Tocadiscos para la transferencia de música
  • Tarjetas de sonido
  • Mini altavoces
Comparativa de velocidades


Conexiones de dispositivos externos
  • Firewire 800: 100 MB/s
  • Firewire s1600: 200 MB/s
  • Firewire s3200: 400 MB/s
  • USB 1.0: 0,19 MB/s
  • USB 1.1: 1,5 MB/s
  • USB 2.0: 60 MB/s
Conexiones de dispositivos externos de Alta Velocidad
  • USB 3.0: 600 MB/s
  • Thunderbolt: 1200 MB/s
Conexiones para tarjetas de expansión
  • PCI Express 1.x (x1): 250 MB/s
  • PCI Express 2.0 (x1): 500 MB/s
  • PCI Express 1.x (x8): 2000 MB/s
  • PCI Express 2 (x8): 4000 MB/s
  • PCI Express 1.x (x16): 4000 MB/s
  • PCI Express 2 (x16): 8000 MB/s
Conexiones de almacenamiento interno
  • ATA: 100 MB/s (UltraDMA 5)
  • PATA: 133 MB/s (UltraDMA 6)
  • SATA I: 150 MB/s
  • SATA II: 300 MB/s
  • SATA III: 600 MB/s
Universal Serial Bus
USB Icon.svg
Símbolo USB
TipoComputer Hardware Bus
Historia de producción
DiseñadorAjay Bhatt, Intel
Diseñado enEnero 1996
FabricanteIntel, Compaq, Microsoft, NEC, Digital Equipment Corporation, IBM, Nortel
Especificaciones
Longitud5 metros (máximo)
Ancho11.5 mm (A-plug), 8.45 mm (B-plug),
Alto4.5 mm (A-plug), 7.78 mm (B-plug, pre-v3.0)
Conectable en calienteYes
ExternoYes
Electrico5 volt DC
Voltaje maximo5 volts
Corriente maxima500 mA (hasta 1 A el USB 3.0: 5 watios)
Señal de DatosPacket data, defined by specifications
Ancho1 bit
Ancho de banda1.5-480 Mb/s (y USB 3.0: 10 veces mayor)
Max nº dispositivos127
ProtocoloSerial
Cable4 wires
Pines4 (1 supply, 2 data, 1 ground)
ConectorUnique
Patillaje
USB.svg
El puerto estándar USB A (izquierda) y USB B (derecha)
Pin 1VCC (+5 V)
Pin 2Data-
Pin 3Data+
Pin 4Ground

Universal Serial Bus
USBsig.JPG
Memoria USB
USB Male Plug Type A.jpg
Conector USB tipo A macho
EXTENSION CABLE USB.JPG
Prolongador USB3.0
USB2.0 PCI Card Asus-2.jpg
Tarjeta PCI-USB 2.0.
USB to PS2 mouse adapter.jpg
Adaptador USB a PS/2
USB Twisted Pair.svg
Los cables de datos son un par trenzado para reducir el ruido y las interferencias
USB types 2.jpg
Tipos diferentes de conectores USB (de izquierda a derecha): micro USB macho, mini USB, tipo B macho, tipo A hembra, tipo A macho.
USB flash drive.jpg
Una memoria USB como ésta implementará normalmente la clase de dispositivo de almacenamiento masivo USB